Channel Morphology Overview

- natural versus constructed (humans, beavers)
- equilibrium versus non-equilibrium
Bartlett Reservoir Main Spillway, 17,000 cfs, Jan 2 2005, Photograph by Bert Duet, USGS
Channel Morphology Influences/Controls

- flows (these have magnitude, duration & frequency)
 - ground water / surface water + exchanges
 - base / low flow
 - flood / storm flows
 - probable maximum flood
- ecosystem
 - flora (micro to mega)
 - fauna (micro to mega)
 - humans (some charismatic)
- substrate
 - rock
 - alluvium / colluvium / soil

photo by CMS
Fossil Creek photo courtesy of APS/N. Berezenko
Other photos by CMS
Channel Morphology Influences/Controls

- sediment budget
 - what is available
 - what enters the system
 - what leaves the system

- geometrics
 - channel gradient
 - constrictions on lateral migration

- lesser factors
 - short-, moderate & long-term geophysical / tectonic events
 - vertical displacement associated with earthquakes
 - uplift
 - subsidence
 - climate, climate change
 - water chemistry
Stream Rehabilitation at Clover Springs
photos by Sean Welch
the morphology of most well-developed channels exhibits a capacity for two sets of lows, low to moderate, and moderate to high...

- low-flow channel – shaped by frequent low- to moderate-magnitude storm flows, e.g., the 2-yr storm, referred to by some as the "bank-full event"
- high-flow channel – shaped by much larger infrequent storm flows that also do a lot more work in terms of sediment erosion, transport and deposition, as well as re-arranging the vegetation and the landscape
Missouri River at Roach Port (Rocheport), MO

from NASA's Scientific Visualization Studio

http://svs.gsfc.nasa.gov/
Stream Classification

• ...a descriptive tool used to systematically organize our observations – usually of stream channel morphology
• ...may or may not be useful as a basis for stream restoration or stream management actions
• ...you will encounter different stream classification schemes depending on where you are working and depending on the orientation and biases of the individuals in charge
Managing Stream Classification Obsession Syndrome

• Here are some references that address some of the pitfalls associated with compulsive-obsessive application of stream morphology classification:

Stream Classification Schemes

• two stream classification schemes in use today:

• both use geomorphic characteristics and physical processes as a basis for classification
Cascade

Step-pool

Plane bed

Pool riffle

Pictures from Montgomery & Buffington, 1997
Step-pool morphology with Travertine steps on Fossil Creek, Photo by Lorrie Yazzie

Figure 3. Schematic longitudinal profiles of alluvial channel morphologies at low flow: (A) cascade; (B) step pool; (C) plane bed; (D) pool riffle; and (E) dune ripple.

from Montgomery & Buffington, 1997
Figure 6. Composite slope distributions for channel reaches surveyed in this and related studies (Buffington, 1995; Montgomery et al., 1995); boxes represent inner and outer quartiles; vertical lines represent inner and outer tenths.

from Montgomery & Buffington, 1997

bedrock (Naco Formation) steps on Fossil Creek, Photo by CMS
Channel Morphology

• ...channel morphology will develop, in part, under the influence of both long-term, frequent, low-magnitude flows, and, high-magnitude, short-term less frequent flows. These high-magnitude flows have the capacity, in the short-term, to undo much of what happens in their absence...

Cascading flow on the Rio de Flag in historic times. Bottomless Pit, south of Elden Mountain by A.E. Hackett, USGS PP 76, 1913